Classification of Discrete and Rhythmic Movement for Humanoid Trajectory Planning

نویسندگان

  • Evan Drumwright
  • Maja J Matarić
چکیده

Recent approaches towards trajectory planning for humanoid robots have divided trajectories into two categories: point-to-point and rhythmic. The former has been implemented traditionally using splines while the latter recently has been implented using mechanisms like pattern generators and neural oscillators. Researchers typically use knowledge of the task to be executed or empirical comparison to determine whether a point-to-point planner or a rhythmic planner is to be used. However, task knowledge is not always available a priori and empirical comparison is time consuming. We present a classifier that automatically determines whether a task is point-to-point or rhythmic using a sample of motion from that task. We evaluate this method on manually labeled motion-capture data of human tasks as well as on Dynamic Motor Primitives, a powerful mechanism for generating point-to-point and rhythmic trajectories. Additionally, we show that our classifier is capable of classifying movements that humans are unable to label as either discrete or rhythmic.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Low Friction Demanding Approach in Gait Planning for Humanoid Robots During 3D Manoeuvres

This paper proposes a gait planning approach to reduce the required friction for a biped robot walking on various surfaces. To this end, a humanoid robot with 18 DOF is considered to develop a dynamics model for studying various 3D manoeuvres. Then, feasible trajectories are developed to alleviate the fluctuations on the upper body to resemble human-like walking. In order to generate feasible w...

متن کامل

Toward simple control for complex, autonomous robotic applications: combining discrete and rhythmic motor primitives

Vertebrates are able to quickly adapt to new environments in a very robust, seemingly effortless way. To explain both this adaptivity and robustness, a very promising perspective in neurosciences is the modular approach to movement generation: Movements results from combinations of a finite set of stable motor primitives organized at the spinal level. In this article we apply this concept of mo...

متن کامل

Nonlinear Dynamical Systems as Movement Primitives

This paper explores the idea to create complex human-like movements from movement primitives based on nonlinear attractor dynamics. Each degree-of-freedom of a limb is assumed to have two independent abilities to create movement, one through a discrete dynamic system, and one through a rhythmic system. The discrete system creates point-to-point movements based on internal or external target spe...

متن کامل

Optimal Trajectory Generation for Energy Consumption Minimization and Moving Obstacle Avoidance of SURENA III Robot’s Arm

In this paper, trajectory generation for the 4 DOF arm of SURENA III humanoid robot with the purpose of optimizing energy and avoiding a moving obstacle is presented. For this purpose, first, kinematic equations for a seven DOF manipulator are derived. Then, using the Lagrange method, an explicit dynamics model for the arm is developed. In the next step, in order to generate the desired traject...

متن کامل

Mechatronic Hand Design with Integrated Mechanism in Palm for Efficiency Improve of the Finger.

One of the most important case in humanoid robot designing is hand, which it consider as an country development. High percentage of robot work quality depend on hand capability. A robot function increase with hand movement. One of important movement in artificial hand capability relate to fingers lateral movement. This case has more effect intake of special objects such as round shape or moving...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005